The SINATRA study

  • Research type

    Research Study

  • Full title

    The SINATRA study: SkIN hydrAtion evaluation with TeRAhertz scanning

  • IRAS ID

    270335

  • Contact name

    Joseph Hardwicke

  • Contact email

    j.hardwicke@warwick.ac.uk

  • Sponsor organisation

    University Hospital Coventry and Warwickshire

  • Duration of Study in the UK

    2 years, 0 months, 18 days

  • Research summary

    Medical imaging commonly involves the use of radiation, such as x-rays, that can give detailed images of internal structures of the body but can carry a small risk of tissue damage due to the radiation involved. As such, the number of x-rays and computed tomography (CT) scans that an individual can have has to be minimised. Methods have recently been developed that make use of electromagnetic radiation for imaging purposes at terahertz (THz) frequencies, the region of the spectrum between millimetre wavelengths and infrared. Terahertz spectroscopic imaging uses low power levels such that adverse effects on tissues are insignificant and is safe for in vivo imaging of humans [1]. The terahertz region is between the radio frequency region and the optical region generally associated with lasers. Both the IEEE RF safety standard and the ANSI Laser safety standard have limits into the terahertz region. The focus of this project is to investigate THz spectroscopic imaging as a new and powerful tool for analysing skin properties, termed “THz skinometry”. The novelty in this project lies in tailoring the instrumentation and algorithms of THz scanning to accurately measure properties of human skin (e.g. hydration levels and skin thickness) in vivo. The customised non-contact and pressure-controlled contact THz probes developed will be able to do spectroscopic measurements of skin in vivo at the molecular level. This will be the first demonstration of in vivo THz imaging of skin globally and will facilitate quantitative characterisation of skin in a way that has hitherto not been possible and could lead to a step change in THz technology usage (similar to that currently used in airport security scanners).

    The SINATRA study is pilot study with a primary aim to explore the feasibility of the trial methodology. In addition, secondary objectives of the study will investigate if THz light is able to detect subtle differences in skin hydration and their clinical relevance. Due to the unprecedented sensitivity of THz light to skin hydration, we will also investigate if different skin types have a preferential uptake of certain emollients. This would include dry skin conditions such as eczema, psoriasis and post-operative scars. This will give us information on how to optimise the types of emollients used in future development of new moisturisers and sunscreens. This is already under investigation in a cohort of volunteers with unaffected skin (unpublished pilot study data, University of Warwick). Additionally, as part of the SINATRA study, we will investigate if THz imaging is able to detect subclinical (invisible) skin cancer (residual basal cell carcinoma (BCC)) and enhance the diagnosis of suspected skin cancer (malignant melanoma) in vivo. Skin cancer is known to produce a localised inflammatory reaction and microscopic swelling and so the changes in skin hydration may be able to be objectively measured by THz skinometry.

  • REC name

    Yorkshire & The Humber - Sheffield Research Ethics Committee

  • REC reference

    21/YH/0221

  • Date of REC Opinion

    13 Oct 2021

  • REC opinion

    Further Information Favourable Opinion